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An elastoplastic problem (EPP) is considered in the case when the load on part of the boundary of the 

domain does not vary. A plastic zone is adjacent to this part of the boundary, and the stress field in this 

zone is often considered to be known in advance. This problem then reduces to the problem of 

matching the plastic stress field with the required elastic field subject to the condition of the continuity 

of the stresses in the required matching contour. The elastic stress field which is determined here may, 

however, extend beyond the yield surface. For example, in the case of the well-known problem of the 

biaxial loading of a plane with a hole [l], this occurs when the load reaches a certain critical value but 

not a limit one [2]. In the case of a superficial load, the solution of the matching problem is not a 

solution of an EPP. In this case, a new stress field has to be constructed in a part of the plastic xone in 

order to solve the EPP. 

In the case of a supercritical load, which only differs slightly from a critical load, this problem is 

solved by the small-parameter method. Here, the shape of the plastic xone is also determined. To be 

specific, we consider the problem of a plastic zone which wholly encompasses the contour of the hole to 

which a non-varying load is applied. A similar construction can be used for other planar EPPs with 

critical loads. The calculation of the plastic zone which encompasses a circular hole in a plane which is 

subject to biaxial loading at infinity is presented as an example. 

1. THE CRITICAL LOAD IN THE MATCHING PROBLEM 

SUPPOSE an elastoplastic body is under conditions of plane strain. The corresponding plane 
problem for a plane with a hole or for a bounded domain with a hole is considered. The load is 
described by forces which are imposed on the contour of the hole and at infinity (or on the 
outer boundary of the domain, respectively). Let the hole be completely encompassed by a 
plastic zone fip which is separated from the elastic zone &T by the contour 1 (see Fig. 1). The 
components of the stress tensor a,, 6, and ax,,, in an x, y Cartesian system of coordinates 
satisfy the equilibrium equations and the yield criterion 

aa, + a%cy _ a%y au, - -0, - 
ax ay 

+ -=o, 
ax aY 

F(~)~(uy-u,)*+4u~y_1=0 (l-1) 

in the plastic zone. The stresses are assumed to be dimensionless. They are reduced with 
respect to the quantity 2k, where k is the yield limit under pure shear. 

The load on the contour of the hole subsequently remains constant. 
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Fro. 1. 

It is usually assumed that Eqs (1.1) together with the force boundary conditions on the 
contour of the hole completely define the stresses in the plastic zone. This stress field is 
denoted by oP and is assumed to be known. 

In the elastic zone, the stresses are defined by a biharmonic stress function. The condition of 
continuity of the stresses enables us to express the second derivatives of this function on the 
unknown matching contour 1 in terms of the known stresses op in the plastic zone. 

The problem of finding the matching contour 1 and the biharmonic stress function which 
satisfies these equations and the specified loading conditions at infinity (or on the outer 
bo~da~ of the domain) will henceforth be referred to as the matc~ng problem. Starting out 
from [l], where an analytic solution of the matching problem was constructed in the case of a 
plane with a circular hole, analytic and numerical methods have been developed for solving it. 
A review of these methods can be found in [3,4]. 

The solution of the matching problem is not always the solution of the elastoplastic problem. 

Example. Suppose a plane with a load-free circular hole is subjected at infinity to the action 
of a force p along the x axis and a force q along the y axis (like the stresses, the forces are also 
made dimensionless) 

ax+P, ay-+q, Oxy+O as x2 -by* -+m 

The solution of the matching problem and, in partic~ar, the stress field &‘, is constructed 
[1] subject to the condition 

However, it can only be used as the solution of the elastoplastic problem when the auxiliary 
condition I q - p Is d(2) - 1 is satisfied. 

The reason for this firstly lies in the fact that, when Iq - p I> d(2) - 1, there are characteristics 
of (l.l), constructed for the stress field up, which intersect the matching contour at three 
points. On account of this, there is no corresponding solution for the displacements [4]. The 
families of characteristics and the matching contour 1 for the solution in [1] are shown in Fig. 2 
for various q > p > 0, which satisfy conditions (1.2), in the coordinates In r/a and Q, (r and up are 
polar coordinates in the x, y plane and n is the radius of the hole). The cases when q-p c 
4(2)--l, q-p= 4(2)-l, and q-p>q(2)-1 are shown in Fig. 2(a-c), respectively. 
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FIG. 3. 

Secondly, when I q-p I> J(2) -1, the stress field constructed in [l] extends in a part of the 
domain Jz”, beyond the yield surface [2]. At values of I q-p I close to d(2)- 1, this occurs in the 
neighbourhood of the point of contact of a characteristic and the contour 1 corresponding to a 
value of I q-p I= 4(2)-l. This link between the stresses extending beyond the yield surface and 
the contact of a characteristic with the matching contour also holds in the case considered in 
Sec. 2. 
Let us now consider a matching problem when the load at infinity (or on the outer surface of a 
domain) is governed by a monotonically increasing dimensionless parameter r, while the load 
on the contour of the hole is constant. By virtue of the latter condition, the stress field crp in 
the zone Qe is independent of the parameter r, The zones RP, Q’ and the matching contour I 
depend on the parameter r and are henceforth denoted by Q:, &2: and Z,. 

When r d r,, let the condition of the admissibility of the stresses F(a) G 0 be satisfied in the 
case of the solution of the matching problem in the zone &2: and, for r close to r,, r > r,, let 
there be a point Q, on the contour 1, such that the opposite inequality F(a) > 0 holds at the 
intersection of a certain neighbourhood V, of it with the zone fit; the stresses extend beyond 
the yield surface (see Fig. 3). We shall call the value of r,, and the load corresponding to it the 
critical values, while the loads which correspond to r c r,, (r > r,,) are referred to as subcritical 
(supercritical). In the example being considered, for the load (zp,, 2q0) satisfying conditions 
(1.2) thevalue r,,=(J(2)-l)llq,,-p,l iscritical. 

In the case of supercritical loads, the solution of the matching problem does not yield a stress 
field which is a solution of the elastoplastic problem. The aim of this paper is to construct a 
stress field which is a solution of the elastoplastic problem in the case of a supercritical load 
when r- r,,4. 

2. THE CRITICAL LOAD AND THE CONTACT OF A CHARACTERISTIC 
WITH THE MATCHING CONTOUR 

We will point out a property of the critical load which is important in the ensuing discussion 
(it has been mentioned in the example in Sec. 1 and also holds in the general case). It is namely 
that, at the critical load, contact occurs between the characteristics of system (1.1) and the 
matching contour ZZO. 

In order to prove this property, let us fist consider F,, the function in (l.l), for the case of the stress 
field 0, which is the solution of the matching problem in the zone Q, at a value r of the loading 
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parameter. Let t3F,/& be its derivative along the direction of the normal to the contour 1, which is 

external with respect to the domain Kl:. Let r, be the critical value of the loading parameter, Q*, where 

r > r, is the point indicated in the definition of the critical load, and let Qro be the point on the contour lr, 

which is the limit point for points Q, when r + r,. 
We will show that the derivative 

(2.1) 

vanishes at this point. 

Actually, the equality F, = 0 always holds on the contour 1, by virtue of the continuity of the stresses. 
Hence, in the case when r< r,, when F, ~0 in the zone Sz:, the inequality dF,l& a0 is satisfied at all 
points of the contour 1,. Likewise, in the case when r > r,, when F, > 0 in the domain V, n Sit, the 
inequality JF, I& 3 0 is satisfied at the point Q,. When r = r,, Eq. (2.1) holds at the point Q,, by 
continuity. 

Allowing for the fact that the relationship F, = 0 is satisfied in the zone Cl:, we represent the equality 

(2.1) in the form [dF,/&]l,_=O (here and subsequently, a discontinuity in a quantity is denoted by 
square brackets). 

We will now show that contact between a characteristic and the contour I, at the point Q,, follows 

from this equality. We select a system of Cartesian coordinates with the origin at the point 12,, with the y 
axis directed along the normal and the x axis directed along the tangent to the contour Ir,. Then, 
according to formula (l.l), in the case of the function F,, the preceding relationship is represented in the 

form (when x=0, y =0) 

(or - 4 (I$$Wl - [ao,/a~l) +4 uxy laoXy/ayl = 0 

When account is taken of the relationships (when x = 0, y = 0) 

[a~,ylayl = 0, [au,/ayl = 0 

which follow from the equilibrium equations (l.l), it is equivalent to the equality (when x = 0, y = 0) 

tuv -ux) [au,laYl = 0 

If the second factor differs from zero, the equalities 6, -0, = 0 and Ok = kJ$ are satisfied at the point 

Q,,. This means [S] that the directions of the x and y axes are characteristics for system (1.1) at the point 

Q,,* 
Hence, in the case of the critical load r = r,, the characteristic of system (1.1) is tangent to the matching 

contour 1, at the point Q,, only if the discontinuity [&,I&] is non-zero at this point. The opposite 

assertion also holds, namely, when r s r., let the solution of the matching problem in the domain n:, 

satisfy the condition of the admissibility of the stresses F(a) G 0 and, when r = r., the characteristic of 
system (1.1) is tangent to matching contour 1,. at the point Q,. 

We will show that, in the general case, the value of r. is the critical value. Consider the function 
f, = dF,/& for a value of the parameter r on the contour 1, close to r.. When r s r., the inequality 
f, ~0 is satisfied at all points of the contour 1, and, in particular f, SO. At the point Q,, the 
characteristic is tangent to the contour 6, and this means that the equality (cry - o,)(Q,) = 0 holds in the 
same local Cartesian system of coordinates as was used above. The relationship f,.,(Q,.) = 0 follows from 

it, The function F,. therefore has a local maximum at the point Q,. A local maximum of the function f, 

at a value of the parameter r close to r. corresponds to it. Let us define the function g(r)= maxfr. This 
function is positive for values of r < r. and vanishes when r = r.. Hence, in the general case (when 

(dgl dr)(r.) + 0), it is positive when r > r.. The inequality (JF, l&)(Q,) > 0 is then satisfied at the point Q, 
at which the function f, reaches a maximum. The inequality F, > 0 is therefore satisfied in the domain a: 

close to the point Q,. Consequently, the critical load corresponds to the value of r at which the char- 
acteristic and the matching contour are tangent to one another. 
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Then, the characteristics are not tangent to the matching contour in the case of a subcritical load but 

intersect it at a single point. Hence, the contact which occurs at the critical load between the characteristic 

and the matching contour is of the second order (see Fig. 2). 

Remark. The properties which have been established refer to the general case which is also considered 

later. It is possible, however, that they will break down when there is a certain degeneracy. This occurs 
when (dgldr)(r,)=O. Then, when r> r,, the function g(r) may take not positive values, as was consid- 
ered above, but negative values. It is therefore necessary to check that there is no degeneracy when 
applying the properties which have been established to the analysis of an actual problem. 

3. THE PLASTIC ZONE OF THE SOLUTION OF AN ELASTOPLASTIC 
PROBLEM IN THE CASE OF A SUPERCRITICAL LOAD 

The plane elastoplastic problem has a unique solution [6] in the case of a supercritical load if 
it is below the critical load. The stress field of this solution in the corresponding plastic zone is 
not identical with the field crp everywhere. In fact, if this were to be so, the solution of the 
elastoplastic problem would also be the solution of the matching problem. However, the latter 
is also unique and, in the case of a supercritical load, passes beyond the yield surface, which 
means that it cannot be identical with the solution of the elastoplastic problem. 

Hence, in the case of a supercritical load, the stress field op is only preserved in a certain 
part P- of the plastic zone of the solution of the elastoplastic problem. Each point of the 
domain P- is joined to the contour of the hole by curves of both families of characteristics of 
system (1.1) which lie within the plastic zone. In other domains of the plastic zone, where the 
points cannot possibly be joined in this manner with the contour of the hole, the stress field s 
differs from op. Let P’ be such a domain and let L- be the curve which separates this domain 
and the domain P-. 

The curve L- is a characteristic of system (1.1). Actually, if this were not so, the stress field 
crp would propagate into the domain P’ (no other continuous extension of this solution of 
system (1.1) through a non-characteristic curve is possible). This, however, contradicts the 
choice of the domain P’. Hence, the domain P’ is separated from the domain P- by the 
characteristics of system (1.1). We shall henceforth confine ourselves to the case when the 
domain P’ under consideration is separated by a single characteristic (Fig. 4). 

4. THE SMALL-PARAMETER METHOD IN AN ELASTOPLASTIC PROBLEM 
IN THE CASE OF A SUPERCRITICAL LOAD 

Let r,, be the critical value of the loading parameter. We will consider a supercritical load, 
which corresponds to a value of r = r,, +h, 2el. It is required to find the stress field which is 
the solution of the elastoplastic problem in the case of this load. 

Let E, and P, be the corresponding elastic and plastic zones, and c- and p.’ be the parts of 
the plastic zone in which crp and the field which differs from it S, (Sec. 3) are the stress fields, 
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respectively. We will denote the stress field in the elastic zone by a,” and the curves, which 
separate the pairs of domains P; and P,‘, P: and E,, P; and E, by L;, L: and L,, 
respectively (see Fig. 4 where the subscript E is omitted). 

For the critical load E = 0, the solution of the matching problem is the solution of the 
elastoplastic problem: the domain P,+ and the curves r4J and G are absent, the domains P,- 
and E,, the contour & and the stress field a; are, respectively, identical with fir0 and ~2b, the 
contour k, the stress field 6,. It is required to find the solution of the elastoplastic problem 
when E # 0, that is, to find the curves L;, L: and L, and the field of the stresses s, and CT; such 
that (1) the system of equations (1.1) of the theory of plasticity is satisfied in the domain PC+ 
when CT = s,, (2) in the domain E,, the stress field CJ = a: is expressed in terms of a biharmonic 
stress function and satisfies the admissibility condition F(a) < 0, (3) the matching condition, 
that is, the condition of the continuity of the stresses is satisfied on the contours L;, L: and L,, 
and (4) the boundary conditions for the stresses under a load corresponding to the value 
r = r, + E’ of the load parameter are satisfied at infinity (or on the outer boundary of the 
domain). (We recall that the stress field cr = crp which satisfies system (1.1) and a fixed bound- 
ary condition on the contour of the hole is determined in the domain P;.) 

A number of problems both with complete and incomplete envelopment of the hole by a 
plastic zone is solved by small-parameter method [7, 81. In the case of a supercritical load some 
additional treatment is required. This is associated with the determination of the stresses in the 
zone Pea and with checking the admissibility of the stresses in the zone E,. 

The system of coordinates. In solving the problem in question by the small-parameter 
method we shall subsequently use a special system of coordinates which is associated with the 
contour L, = L*,. Let x be the length of an arc measured from the point Q,, ro(x) by the 
vectorial parametric specification of this contour, and n(x) be the unit normal to it which is 
external with respect to the domain Sz fO. We will introduce an orthogonal curvilinear system of 
coordinates X, y by correlating a point in the plane with a radius vector r(~, y) = b(x) + n(x)y 
with the pair (x, y). 

We shall denote the dimensionless physical components of the stress tensor in this system of 
coordinates, which are referred to the quantity 2k, by a,, CT,, and oXY. Here, the yield condition 
preserves its previous form while the equilibrium equations takes the form 

aox 
-t(1t 
ax 

(4.1) 

aox, - +(1 t 
ax 

R$)2tu$=o 

where R(x) is the radius of curvature of the contour Lo. 

Representation of the boundaries of the plastic zone. The segment L; of the boundary of the 
domain P; is a characteristic (Sec. 3). Hence, if there is no finite difference between the angles 
of inclination of L; and the limiting curve for it I,,,, then Lr is located close to the point QZO 
(X = 0, y = 0) at which th e matching contour and the characteristic are tangent to one another 
under the critical load and L; belongs to this family of characteristics. 

Hence, the zone P<+ lies close to the point QFO. Let us estimate the characteristic dimensions 
of this zone. Let cr = crZ0+t2 (x, y) be the stress field of the solution of the matching problem. It 
reaches the yield surface in a certain domain V, 2 close to the point Q, and, in the x direction, 
the domain has dimensions of the order of E while, in the y direction, the dimensions are of the 
order of E’. The extent to which the stresses extend beyond the yield surface is characterized 
by the relationship I;(o)=~(E~) (Sec. 6). This means that the stress field under consideration 
may also be taken as a first approximation of the solution of the elastoplastic problem both in 
the zone E, as well as in the zone PC+ with an error of the order of l 3. The zone PC+ therefore 
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has the same characteristic dimensions as the domain Vi &. 
Let y = p;(x) be the equation of the curve L;. Since this curve is a characteristic, the form of 

the function p;(x) is determined by the quantity r = r& + r--e3 + . . . , that is, the value of this 
function when x = 0. Let y = f(x, q) be the equation of a characteristic of the same family as L; 
which passes through the point x = 0, y = q. In accordance with the estimate of the size of the 
zone P,‘, let us expand the function f(x, 9) in the neighbourhood of the point x = 0, y = 0 
allowing for the fact that f(0, 17) = rl and that, as a consequence of the second order contact 
between the characteristic and the contour L, (Sec. 2), the relationships 

f(O,O)=O, $(O,O)=O, Z(O,O)=O 

are satisfied at the point x = 0, rl= 0. 
Using the expansion, the equation of the curve L; is represented in the form 

pi (r) = coust = r2, p‘; (f-)= + fx,, z” 
E3 

+f,,r2 z +r3 
e 

(4.2) 

fq =; (O,O), f,, = azf ax-@ (W), fxxx .& , 
=a3f (oo) 

The quantities pi, A, . . . , in accordance with the estimate of the dimensions of the zone Pe+, 
are of the order of unity. The numbers r,, r,, . . . are required in the elastoplastic problem. 

We will seek the equations of the curves L:, L, in the form 

v=p:(x)=e’p;(f)+E3p;(X)+... 
e 

v=P,(x)=Zp,(x)tdp,(x)t..., 

(4.3) 

where pi+(xI~) and p,(x) are unknown quantities. 

Discontinuities in the derivatives of the stress field on the curve L;. The stress field is 
continuous on the characteristic L; but its derivatives, generally speaking, lose continuity. The 
magnitudes of the corresponding jumps are subsequently used to represent the stress field in 
the zone PC+. 

Let us give expressions for them in terms of the minimum number of independent 
quantities. 

The relationships on the characteristic y= f(x, 7) of the system of Eqs (4.1), (1.1) have the 
form 

(4.4) 1 =A“, [$I =AK2 

.(X)=g(x,q)(l t$$ 
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We present the transport equation [7], which controls the values A(x) in the variables p and 
VI 

(Jy+(-5=24, ~y-ux=sin2J/, 2uxy=cos2$ (4.9 

The characteristic L;, for which the transport equation is written, has a slope close to zero 
and belongs to the first or second of the families 

&=(l+&tg$, d&=-(l+R$) ) ctg G 

depending on the value QO, 0) = )5 or o&(0, 0) = -X. To be specific, let us confine ourselves 
to the case when a&(0, 0) = -X and, consequently, o(0, 0) = z/2 (this is realized, in particular, 
in the example given in Sec. 1). Then, the transport equation 

+$)_I 1: I -$[$I29 c=-(lt;)ctgll 

when account is taken of the relationship on the characteristic [&r/g]= [awl&~] and of the 
substitution (4.3, is transformed into the form 

dA/dx = k, (x)A + k2 (x)A’, A = [au,/ay] 

Using its solution, the discontinuities in (4.4) are expressed in terms of the value of A (0) at 
the point x = 0, y = r of the characteristic L;. 

Let us find the solution of this equation in the form of an expansion with respect to the x 
coordinate in the neighbourhood of the point x = 0. The coefficients of the expansion, as well 
as the expressions for k,(x) and /C,(X) in the equation and the value of A (0), depend on the 
quantity r=r2e2+ . . . , and therefore, in their turn, we expand them with respect to the 
parameter E. As a result of the calculations, we find that (by virtue of the estimate of the 
dimensions of the zone p.‘, the expansion coefficients are of the order of unity and terms of 
higher order of smallness than E’ are not written) 

x 
A(x)=A,tEAb-tf2(A*r2t~Ab: 

X2 

E 

p... 

(4.6) 

The coefficients 4, 4, . . . of the expansion of the discontinuity [da/$] lr=o are required in 
the elastoplastic problem. 

For the quantity X(.X) we use its expansion 
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According to formula (4.4) together with the representation (4.6), it leads to expressions for 
the discontinuities on the characteristic L; (terms of a higher order of smallness than e2 are 
neglected) 

The quantizes 

f 

1 a@$ - a!) 
Xrl =_._- 

1 a2 (a$ - 05) 

2 ay 
(W); fx,, = - 2 axZ v-m 

(4.7) 

(4.8) 

are found using the equation of the characteristic. 
The discontinuities in the second-order derivatives (and, if required, the discontinuities in 

the higher derivatives) are expressed in terms of the parameters B,, B,, . . . while the 
quantities which are analogous to the quantities A,,, A,, . . . are also expressed in terms of the 
4 themselves. We note, in particular, that the expression which is subsequently used (terms 
that are small compared with unity are neglected) is 

t 
ewl =,o(_a(u~y-m (0,0)+&i)+ . . . (4.9) 

Representation of the stress field. In the zone c we expand the stress field S&X, y) with 
respect to the second argument y = p;(x)+ (y- P;(X)) in the neighbourhood of its value p;(x). 
Using the continuity of the stresses on the curve L;, q,(x, P;(X))= s.(x, P;(X)) and the 
representation of the derivatives 

where the discontinuities are taken on the contour L; and the analogous representation for the 
higher derivatives, we find (terms of a higher order of smallness than e4 are neglected) 

(4.10) 

This representation together with expressions (4.7) for the discontinuities in the derivatives 
and the expressions which are analogous to those for the discontinuities of the higher 
derivatives reduce the problem of constructing the stress field s, to that of finding the quan- 
tities 4, Al, . . . , B,, B,, . . . 

We shall see the stress field a,” in the elastic zone E, in the form 

u,‘(X,y)=u~(X,y)+f2~,e(x,y)~~3~.3e(X,Y)~~4~qe(X‘Y)+. -- (4.11) 
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where a&~, y) = o&, y) is the solution of the matching problem in the case of the critical 
load, and the fields a; and CJ; are of the order of magnitude of unity and, possibly, also depend 
on E. 

Matching conditions on the boundary of the elastic and plastic zones. On the contour L, v L: 
which separates the elastic and the plastic zones, the stresses are continuous. On the curve L,, 
the continuity conditions a@, p,(x)) = &‘(x, p,(x)) are written as in [8, 91 on the basis of the 
expansions (4.3), (4.11) and relationships following from (4.1) (the notation o, = cr; - op is 
used) 

cao,,,/ay) (x, o)= 0, (ao,,/ay) (x, 0) = 0 

In the case of the first terms of expansion (4-l), the continuity of the stresses leads to the 
following equations (for values of x that correspond to a point of the curve LJ 

u,e,, (x, 0) = 0, a& (x, 0) = 0, !!r!Jz (x, O)P, (x) + a;, (x, 0) = 0 
ay 

ugxy (x, 0) = o,03”y(x, 0) = 0, fp (x, 0) P3 (x) + a;, (x, 0) = 0 

u&Y (x, 0) = - a2 (x, 0) p* (x) - A- a3 
2 ay2 

(x, 0) P: (4 

au,e, 
u& (x, 0) = - - 

I aGoy 

ay 
(x, O)P2 (xl - z ayz (x3 O)Pi 6, 

f$ (X,0)P4(x)+u~x(X,o)t~ x 
I a%,, 

ay ( tO)P2@)+- - (x9 W(x)=0 
2 af 

(4.12) 

The condition of continuity on the curve L:, s&x, p:(x))= a:(~, p,(x)) is written on the 
basis of expansion (4.10), (4.11). Here, taking account of the estimate of the size of the zone 
PC+, an additional expansion with respect to x is carried out in the neighbourhood of the point 
x= 0 and relationships (4.7) are also used. The continuity of the stresses leads to matching 
conditions which are identically satisfied for terms of the order of unity and have the form for 
terms of the order of E’ (at x values to which points on the curve L: correspond) 

a;,, (x. 0) = 0, u&(x, 0) = 0 

aa,, ((),-j)p,+ (b) t u& (0,O) - A0 (& - PY (5)) = O 
ay E 

For terms of the order of e3, the matching conditions have the form 

u:x’ (x, 0) = 0, $y (x, 0) = 0 

~(O,O)P;(x;) + 2 (0,O) ; P2+ (5) au;, 
+--$- (0,0)X + 

E 

t ugx (0,0)-A, (P;(;) -Pi (+G “T”“r’-Pi(:_))= 0. 

For terms of the order of e4, the matching conditions have the form 

(4.13) 

(4.14) 

1 a2uoxy 
&-y (x, 0) = - 2 -q- (O,O) (Pi cr;,j2 -2 (0,O) P; (;) + 
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(4.15) 

Here, in the expressions for the discontinuities in the second derivatives, it is understood 
that terms which are small compared with unity, such as, for example, in formula (4.9) are 
neglected. 

Representation of the boundary conditions. The load at infinity (or on the outer boundary of 
the domain under consideration) is specified as a function of the parameter r. Its expansion 
with respect to the small parameter e2 leads to the boundary conditions for the fields a;, ai, 
. . . in the expansion (4.11). 

For example, in the case of the biaxial stretc~ng of a plane with a hole by forces p and q at 
inanity 

%-+P.c,+q, c,y -+o when x2+y2 -+= 

and the corresponding boundary conditions for the first terms of expansion (4.11) have the 
form (when x2 + y2 + -) 

(4.16) 

1 d2q 

Successive approximations. When there is no plastic zone PC+ with a stress field different 
from CT* the matching conditions for the components CT;,., a& do not contain an unknown 
expansion coefficient p, which describes the boundary of the plastic zone [8, 91 in the same 
approximation. Conditions (4.13)-(4.15) as well as the matching conditions in subsequent 
approximations also possess a similar property, and this also applies to the case under con- 
sideration. However, the procedure for constructing the subsequent approximation which is 
used when there is no zone P,’ (the matching conditions for the components crfuy and a& are 
used to find the field oz from the elastic problem and the matching condition for the 
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component a: is then used to find the coefficient p,) is additionally required in the case under 
consideration. 

The matching conditions where there is a zone P,‘, generally speaking, contain parameters 
that describe the stress field in this zone and the positions of the boundary of the PC- and PC+ 
zones. These quantities, such as the parameter A, in condition (4.13), for example, may be 
incompletely determined by the preceding approximations. In order to find their values, it is 
necessary to use the admissibility conditions for the stresses (the fact that they do not pass 
beyond the yield surface) in the elastic zone. This condition guarantees the uniqueness of the 
solution of the plane elastoplastic problem [6] and therefore enables us to determine the values 
of all the free parameters. 

5. THE STRESS FIELD IN THE ELASTIC ZONE AND THE 
BOUNDARY OF THE ZONE p: 

The first unknown term in expansion (4.11) of the stress field in the elastic zone is defined by 
the solution a;(~, y) of the elastic problem in the exterior of the contour L, = ZZO, y = 0 with the 
following boundary conditions. By virtue of relationships (4.12) and (4.13), a load-free 
condition must be satisfied over the whole of the contour I+, and the first of the boundary 
conditions of the type (4.16) must also be satisfied. 

The solution of this problem is 

(5.1) 

where a,(~, y) is the solution of the matching problem with the standard field op for the value 
of the load parameter r (satisfaction of the boundary conditions on the contour L, is checked 
using the geometrical conditions of compatibility on the matching contour Z, which varies with 
the parameter 7). 

The coefficient p&x) in the representation of the curve Le is found from the matching 
condition (4.12) for the component ok 

P2 tx> = P;(x) = - G;“, (x. 0) @Jo, (xv 0) @Y’ (5.2) 

where pi is the first term of the expansion in the representation y = p,“(x) = E’&$-) rf: . . . of the 
matching contour &+2 of the solution of the matching problem. 

The quantities a;(~, y) = 0 and p&l =0 are found in a similar manner using conditions 
(4.12) and (4.14). Hence, the stress field in the elastic zone and the equation of the curve L, 
have the form 

a,” (x, y) = a,e (x, y) + E’ 0; (x, y) -+ U( P j 

4=a~7/a~l,=,o, y=Pf(x)=E2P2(x)+o(f4) (5.3) 
P2 (x) = Pz” @f 

The equation of the curve L, which has been found also enables one to find, to a first 
approximation, the equation of the remaining part of the boundary of the zone P;, that is, the 
remaining part of the characteristic L;_ In fact, in accordance with the estimate (Sec. 4), the 
size of the zone Ped in the x direction (the distance between common points of the curve L, and 
the characteristic L;) is of the order of E. This is only possible when 

r2 =&(O)=-- oZex (~3 t(aoox/a~j mo)-~ (5.4) 

Next, we will find approximations for the boundary of the plastic zone, the stress field S, in 
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the zone P,’ and the characteristic L; which bounds it. In other words, let us fiid the function 
&(X/E) and the parameter A, and also the function pi and the parameter r, that satisfy the 
matching conditions (4.13) and (4.14) for the component ai. As was noted in Sec. 4, the 
matching conditions do not remove the arbitrariness in determination of these quantities and it 
is necessary to use the stress admissibility condition. 

6. THE STRESS ADMISSIBILITY CONDITION. THE BOUNDARY 
OF THE PLASTIC ZONE 

By virtue of relationship (5.3), the stress field a:(~, y) is close to the solution of the matching 
problem, a:(~, y) = CT~~~((X, y)+ 0(c4). A violation of the stress admissibility condition is 
therefore only possible in the neighbourhood of this domain where the solution of the 
matching problem ?T0h2 reaches beyond the yield surface, that is, close to the point x = 0, y = 0. 
On account of this, m using the stress admissibility condition, we consider an expansion with 
respect to x, y, and E of the function 

in the neighbourhood of the point x = 0, y = 0. 
Using the boundary conditions (4.14), (4.15) and the equality which follows from the results 

in Sec. 2 at the point x = 0, y = 0 

0; - 05 = 0, a@; - u$)/~x = 0, ad&/ax = 0 
a~,,yiay = 0, a2 u~,y~axay = 0 

we obtain the expression (terms of a higher order of smallness than l 4 are neglected) 

F(qi,y))=uy2 t(blX2 tbzEL)y+C1X2f2 t 

(6.1) 

a2ue 
a = 4 Usr _.A%+(- _- 

a? 

bl = 
a2 (~7; - u$; au;, 

(--- 
au;, a3ffe OX)’ 

-~ --)t43&, - 
ax2 ay ay a? ay 

au:,, au:, b2=_3_u&.(d----- au:,, 

ay ay 
)+ 8$,,-- 

ay 

Cl =-& 
a2 (0; - 0;) 

ax2 
, ~2 I = 8 $,o c2 2 = CJ,~,)~ 

1 a200xy 
d, =_- 

w,, 

2 
- ,d2=-_- 

aY2 ay 

The stresses and their derivatives in the formulae for the coefficients Q, 4, 4, cl, czl, c,, (i, 
and d, are calculated at the point x = 0, y = 0. Formulae (4.8) and (4.9) hold for the quantities 
f=,,, f, and [J’cr,,/&?] and the quantities pl(xl~) and A, are connected by relationship 
(4.13). 

The stress admissibility condition. Let us consider equation F(a:(x, y)) = 0 in y for a fixed 
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value of the coordinate x. The curves y(x), that correspond to the roots of this equation define 
the domain in which the stresses appear beyond the yield surface F(af(x, y)) > 0. By equating 
expression (6.1) to zero, it is possible to verify that y, = E”& is one of the roots of this equation 
when a&(0, 0) f 0 (this is natural, since the curve y = p:(x) = E~&(x/E) + . . . is the boundary of 
the plastic zone on which the equality I;(a,c(x, y)) = 0 is satisfied by virtue of the continuity of 
the stresses). The second root of the equation being considered is then 

Y2 = - ez {a-’ (b, x2 /e2 f b2 ) + P; (X/E)) (6.2) 

The stress admissibility condition in the zone E: means that the domain in which F(a:(x, 
y)) = 0 does not intersect it. This is equivalent to the condition y,, c y,, that is, to the inequality 

The condition for the admissibility of the solution of the matching problem at a subcritical 
load and the estimation of the dimensions of the zone V, *c2 for a supercritical load. If the 
construction of Sec. 5 is carried out assuming that the zone kc+ is not present and p,‘(x) = p,(x), 
then it leads to the solution of the matching problem. For values of the load parameter z*+E’, 
this solution is given by the expansion c$(x, y)+~“a;(x, y)+ . . . . Correspondingly, formula 
(6.1), if one puts &(X/E) = r, in it and, when r = r, --Ed, one replaces E* by -8, yields the 
expansion of the function F(ot &(x, y)). One of the roots of the equation which determines 
the boundary of the domain in” which the stresses crf52 appear beyond the yield surface is 
y,(x) = zke2r, while the other, that is, y2(x) is found using formula (6.2) with pi replaced by r, 
(and E’ replaced by -E* when r = r, - E*). 

In the case of a subcritical load, the solution of the matching problem crai: does not pass 
beyond the yield surface in the domain which lies outside of the matching contour l,,&. To a 
first approximation, the stress admissibility condition y,(n) s yl(x) reduces to the inequality 

b1 la 2 0, 2&(O) + b&z Q 0 

In the case of a subcritical load, the solution of the matc~ng problem oz,+s extends beyond 
the yield surface in the domain fftpCZ. It is defined to a first approximation by the condition 
yl(x) *: y < y2(x). It is seen from this that the size of the domain Vr +? is of the order of E in the x 
direction and of the order of 62 in the y direction. The magnitude of F(c~~,(x, y)) is positive 
in the domain Vr hl and is of the order of e4. 0 

The extension of the poetic zone and the magnitude of A,. Henceforth it is assumed that a 
strict inequality (the remark in Sec. 2 refers to this assumption) is satisfied in the second of 
relationships (6.4). Then, in the case of a subcritical load, the plastic zone of the solution of the 
elastoplastic problem extends into the exterior of the matching contour of the solution of the 
matching problem (in the neighbourhood of the point x = 0, y = 0), p;(O) > A(O). In fact, for a 
value of the load parameter r,, + e2, the matching contour in the matching problem is described 
by the relations~p y = pf(n) = Ed&+ . . . and the relationship ~~(0) c ~~~0~ holds according 
to the admissibility criteria (6.3), (6.4) with the strict inequality. 

We will show that R, =(~?&,~/ay> (0, 0). Actually, the matching condition (4.13), when 
account is taken of the equality pi = r, and formula (5.4), is equivalent to the relationship 

( !!.f!k (0,O) - ilo) (Pz’ Q - r2 I= 0 

ay 

We will show that, if the second factor vanishes, the stress admissibility condition is not 
satisfied everywhere in the zone E,. In fact, the plastic zone PC+ is located between the curves 
L; and L;. If the factor under consideration vanishes, then, by virtue of formulae (4.2) and 
(5.4), the distance from the curve L: to curve L; (and hence to the matching contour) is of the 
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order of l 3. At the same time, the distance from the boundary of the domain V+ to the 
matching contour is of the order of e’. Consequently, part of the domain VfOd does not 
overlap the zone PC+ and is located in the zone E,. In the domain V&, the stress field o~,~ 
extends beyond the yield surface. By virtue of relationships (5.3), the stress field a: also ex- 
tends beyond the yield surface in the domain V +c 
sible and, consequently, the equality &(xl E) - r’ 

n E,. Hence, the stresses a,’ are inadmis- 
=0 cannot be satisfied. This means that the 

above-mentioned formula holds for 4. The admissibility condition must also be verified 
during calculations in this case also. 

By virtue of the equality &(&T~/J~) (0, 0), the last of the matching conditions (4.13) turns 
out to be satisfied. At the same time, the boundary of the plastic zone (the function describing 
its position is &(X/E)) has still not been found. 

The boundary of the plastic zone. The last of the matching conditions for o; and a; and 
relationship (4.14) for the component 0;; which remains unsatisfied serve for determining the 
curve L:. When account is taken of the equality A,, =(&r,/dy)(O, 0) and expression (4.2) for 
the quantity A, it assumes the form 

x 
- -Mp~(x)+lAof,,, x_” +N 
e E 6 Ez 

(W) + A o f,, r2 + A br2 

(the magnitude of 4 is defined by formula (4.6)). Whence, when A, $0 and it4 #O (the 
remark in Sec. 2 refers to these conditions), we find 

PZ’ (;I = (i Aofxxx ;: +N)/M, r3 =O 

Remark. The boundary of the zone 9’ coincides neither with the matching contour L, +2 in 
the matching problem nor with the boundary of the domain in which the solution oaf the 
matching problem passes beyond the yield surface. 

Hence, in addition to the approximations for the stress field in the elastic zone and the 
segment of the boundary L, between the elastic and plastic zones (relationship (5.3)), 
corresponding approximations are found for: (1) the remaining part L: of this boundary 
(relationship (6.5)), (2) the boundary between the plastic zones P; and c+, that is the curve L; 
(relationship (4.2) in which quantities determined from formulae (4.8), (5.4) and (6.9, occur), 
(3) the stress field in the zone p.‘. The latter is given by formula (4.10) in which, when terms of 
higher order of smallness than c3 are neglected, the remaining terms are completely deter- 
mined by the quantities A,,, r2 and r, which have been found, since they enable one to find the 
discontinuities (4.7) occurring in (4.10) and the function (4.2) p;(x) with the required accuracy. 

7. DEVELOPMENT OF THE PLASTIC ZONE AROUND A CIRCULAR HOLE 

Consider the biaxial loading at infinity p = qO, q = zqO, which satisfies conditions (1.2) in the case of a 

plane with an unloaded circular hole (the example from Sec. 1). The value r,, =(4(2)-1)l qO -pO I is the 
critical one. Using the known solution [l], it is possible to verify that there is no degeneracy (see the 
remark in Sec. 2) in this case and to calculate the value of (4.8), A,, =(a~,,, /$y)(O, 0) and the other 

quantities occurring in formula (6.5). 
The results of calculations of the boundaries of the plastic zone are shown in Fig. 5 as an example. This 

figure shows graphs of the functions y = &‘p2(x) (corresponding to the curve L.) and y = $p;(n/r)+ 
l 3p;(xle) (corresponding to the curve L;) and y = ~&(X/E) (corresponding to the curve L:) as well as a 
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I X 

FIG. 5. 

plot of the function y = 2&(x/r), represented by the dashed line, where &(X/E) is the expression on the 

left-hand side of inequality (6.3). The calculations were carried out for p0 =l.S, qO = 4(2)+0.5 and 

2 = 10m3. The arrangement of the curves shows that the stress admissibility condition is satisfied in the 
zone EC in the case of the problem being considered. 

The curve L*, to a first approximation, is identical with an ellipse, representing the matching contour 
in the solution of the matching problem when z = z, + h. The complete plastic zone in the solution of the 
elastoplastic problem is obtained to a first approximation by adding the part of the plane, the outer 
boundary of which is the curve y = ~&(X/E), to the “plastic zone” corresponding to the solution of the 

matching problem. 
We note that, regardless of the values of p0 and qO, the development of the plastic zone P,’ starts from 

a point which lies on the matching contour 1, which corresponds to the critical load and lies on a ray 

which makes an angle of Id8 with the direction of the x axis. The development of similar zones also starts 

from points which are symmetrical about the above-mentioned zone with respect to the x and y axes. 
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